Discipline :MECHANICAL ENGG.	Semester :3 rd	Name of the Teaching Faculty: PRAVAT KUMAR SWAIN Semester FromDate:15.09.2022ToDate:22.12.2022 No. of Weeks:15		
SUBJECT: STRENGH OF MATERIAL (TH-2)	No. of days/per week class allotted: 04			
Week	Class Day	Theory / Practical Topics		
1 st	$ \begin{array}{r} 1^{\text{st}} \\ 2^{\text{nd}} \\ 3^{\text{rd}} \\ 4^{\text{th}} \end{array} $	 1.Simple stress& strain Types of load, stresses & strains, (axial and tangential), Hooke's law, young's modulus, bulk modulus, modulus of rigidity, Poisson's ratio, derive the relation between three elastic constants Principle of super position, stresses in composite section 		
	1 st	 Temperature stress, determine the temperature stress in composite bar (single core) 		
2 nd	2 nd	• Strain energy and resilience, stress due to gradually applied, suddenly applied and impact load		
	3 rd	 Strain energy and resilience, stress due to gradually applied, suddenly applied and impact load 		
	4 th	Simple problems on above		
	1 st	Simple problems on above		
3rd	2 nd 3 rd	 Simple problems on above 2.Thin cylindrical and spherical shell under internal pressure Definition of hoop and longitudinal stress, Strain 		
	4 th	Definition of hoop and longitudinal stress, strain		
	1 st	Derivation of hoop stress, longitudinal stress, hoop strain, longitudinal strain and volumetric strain		
4 th	2 nd	Derivation of hoop stress, longitudinal stress, hoop strain, longitudinal strain and volumetric strain		
	3 rd	Computation of the change in length, diameter and volume		
	4 th	Simple problems on above		
	1 st	Simple problems on aboveCLASS TEST		
5 th	2 nd 3 rd	 CLASS TEST 3. Two dimensional stress systems Determination of normal stress, shear stress 		
	4 th	 and resultant stress on oblique plane Determination of normal stress, shear stress and resultant stress on oblique plane 		
	1 st	 Determination of normal stress, shear stress and resultant stress on oblique plane 		
6 th	2 nd	Location of principal plane and computation of principal stress		
	3 rd	Location of principal plane and computation of principal stress		
		Location of principal plane and computation of principal stress		
	1 st	 Location of principal plane and computation of principal stress and maximum shear stress using Mohr's circle 		
7 th	2 nd	 Location of principal plane and computation of principal stress and maximum shear stress using Mohr's circle 		

		• Location of principal plane and computation of principal stress and			
	3 rd	maximum Shear stress using Mohr's circle			
		• Location of principal plane and computation of principal stress and			
	4 th	maximum Shear stress using Mohr's circle			
8 th	1 st	4.Bending moment& shear force			
		Types of beam and load			
Ū	2 nd	Types of beam and load			
	3 rd	Types of beam and load			
	4 th	Concepts of shear force and bending moment			
	1 st	Concepts of shear force and bending moment			
	2 nd	Concepts of shear force and bending moment			
		• Shear force and bending moment diagram and its salient features			
9 th	3 rd	illustration in cantilever beam, simply supported beam and			
		overhanging beam under point load and uniformly distributed load			
	. 1	• Shear force and bending moment diagram and its salient features			
	4 th	illustration in cantilever beam, simply supported beam and			
		overhanging beam under point load and uniformly distributed load			
	+	• Shear force and bending moment diagram and its salient features illustration in cantilever beam, simply supported beam and			
	1 st	overhanging beam under point load and uniformly distributed load			
10 th	2 nd	• Shear force and bending moment diagram and its salient feature			
		illustration in cantilever beam, simply supported beam and			
		overhanging beam under point load and uniformly distributed load			
	3 rd	5.Theory of simple bending			
		Assumptions in the theory of bending,			
	4 th	• Assumptions in the theory of bending,			
11 th	1 st	Bending equation, moment of resistance, section modulus & r			
	1	axis.			
	2^{nd}	• Bending equation, moment of resistance, section modulus & neutral			
		 axis. Bending equation, moment of resistance, section modulus & neutral 			
	3 rd	axis.			
	4 th	Solve simple problems			
	1 st	Solve simple problems			
	2 nd	Solve simple problems			
12 th	3 rd				
		Solve simple problems CLASS TEST			
	4 th				
13 th		6.Combined direct & bending stresses			
	1 st				
	2 nd	 Define column Axial load, eccentric load on column 			
	2 ^{nu}				
	3 rd	• Direct stresses, bending stresses, maximum & minimum stresses.			
		numerical Problems on above.			
	4 th	• Direct stresses, bending stresses, maximum & minimum			
		stresses. numerical problems on above. Buckling load computation using Euler's formula (no			
	1 st	 Buckling load computation using Euler's formula (no derivation) in columns with various end conditions 			

14 th	2 nd	Buckling load computation using Euler's formula (no derivation in columns with various end conditions	
11	3 rd	7.Torsion	
	J **	Assumption of pure torsion	
	4 th	• The torsion equation for solid and hollow circular shaft	
15th	1 st	The torsion equation for solid and hollow circular shaft	
	2 nd	The torsion equation for solid and hollow circular shaft	
	3 rd	Comparison between solid and hollow shaft subjected to pure torsion	
	4 TH	CLASS TEST	

RECOMMENDED BOOKS

Sl. No.	Author	Title of the book	Publisher
01	S Ramamrutham	Strength of Materials	Dhanpat Rai
02	R K Rajput	Strength of Materials	S.Chand
03	R.S khurmi	Strength of Materials	S.Chand
04	G H Ryder	Strength of Materials	Mc millon and
	-	-	co.lmtd
05	S Timoshenko and D	Strength of Materials	TMH
	H Young		
	-		Prepared By
			PRAVAT KUMAR SWAIN

PRAVAT KUMAR SWAIN Lecturer Mechanical Engg Deptt G.I.E.T (Polytechnic), Jagatpur, Cuttack