GANAPATI INSTITUTE OF ENGINERING & TECHNOLOGY(Polytechnic), JAGATPUR, CUTTACK DÉPARTMENT OF MECHANICAL ENGINEERING. ## LESSON PLAN-2025 WINTER | | L | ESSON PLAN-2025 WINTER | |------------------------------------|---|--| | Discipline :
MECHANICAL
ENGG | Semester
: 5th | Name of the Teaching Faculty: PRAVAT KUMAR SWAIN | | Subject:
R&AC(TH-5) | No. of
days/per
week class
allotted:
04 | Semester From date: 14.07.2025 To Date: 15.11.2025 No. of Weeks: 15 | | Week | Class Day | Theory Topics | | | 1ST | AIR REFRIGERATION CYCLE. Definition of refrigeration and unit of refrigeration. | | 1ST | 2 ND | Definition of COP, Refrigerating effect (R.E.) | | | 3RD | Principle of working of open and closed air system of refrigeration | | | 4TH | Calculation of COP of Bell-Coleman cycle and numerical on it | | 2 ND | 1ST | Calculation of COP of Bell-Coleman cycle and numerical on it | | | 2 ND | 2.SIMPLE VAPOUR COMPRESSION REFRIGERATION SYSTEM schematic diagram of simple vapors compression refrigeration system | | | 3 RD | Types Cycle with dry saturated vapors after compression. | | | 4 TH | Cycle with wet vapors after compression. | | | 1ST | Cycle with superheated vapors after compression | | | 2ND | Cycle with superheated vapors before compression. | | 3 RD | 3RD | Cycle with sub cooling of refrigerant | | | 4 TH | Representation of above cycle on temperature entropy and pressure
enthalpydiagram | | | 1ST | Numerical on above (determination of COP, mass flow) | | | 2ND | Numerical on above (determination of COP, mass flow) | | 4 TH | 3RD | Discussion of probable question | | | 4тн | 3.VAPOUR ABSORPTION REFRIGERATION SYSTEM Simple vapor absorption refrigeration system | | 5 TH | 1ST | Practical vapor absorption refrigeration system | | | 2ND | COP of an ideal vapor absorption refrigeration system | | | 3RD | Numerical on COP. | | | 4TH | Numerical on COP. | | | 1ST | Numerical on COP. | | | 2ND | CLASS TEST | | 6 TH | 3 RD | 4.REFRIGERATION EQUIPMENTS REFRIGERANT COMPRESSORS • Principle of working and constructional details of reciprocating and rotary compressors • Centrifugal compressor only theory Important terms | |------------------------|------------------------------------|--| | | | Hermetically and semi hermetically sealed compressor. | | 7 TH | 1 ST
2 ND | CONDENSERS Principle of working and constructional details of air cooled and water cooled condenser | | | 3RD | Heat rejection ratio. Cooling tower and spray pond. | | | 4 ^{тн} | Principle of working and constructional details of an evaporator. | | 8тн | 1ST | Types of evaporator. | | | 2 ND | Bare tube coil evaporator, finned evaporator, shell and tube
evaporator. | | | 3 RD | 5.REFRIGERANT FLOW CONTROLS, REFRIGERANTS & APPLICATION OF RFRIGERANTS • Expansion valves • Capillary tube • Automatic expansion valve • Thermostatic expansion valve | | | 4 TH | REFRIGERANTS Classification of refrigerants | | | 1 ST | Desirable properties of an ideal refrigerant. Designation of refrigerant. | | 9тн | 2 ND | Thermodynamic Properties of Refrigerants. Chemical properties of refrigerants. | | | 3 RD | commonly used refrigerants, R-11, R-12, R-22, R-134a, R-71 | | | 4 TH | Substitute for CFC | | 10 TH | 1 ST | Applications of refrigeration cold storage | | | 2 ND | dairy refrigeration | | | 3 RD | ice plantwater cooler | | | 4 TH | frost free refrigerator | | 11 TH | 1 ST | 6.PSYCHOMETRICS & COMFORT AIR CONDITIONING SYSTEMS • Psychometric terms | | | 2 ND | Adiabatic saturation of air by evaporation of water
Psychometric chart and uses. | | | 3RD | Psychometric processes Sensible heating and Cooling | |------------------|-----------------|--| | | 4 TH | Cooling and Dehumidification Heating and Humidification | | 12 TH | 1 ST | Adiabatic cooling with humidification | | | | Total heating of a cooling process | | | 2 ND | SHF, BPF, | | | 3RD | Adiabatic mixing | | | | Problems on above. | | | 4TH | Effective temperature and Comfort chart | | | 1ST | Problems on above. | | 13 TH | 2 ND | Discussion of probable question | | | 3RD | CLASS TEST | | 13 | 4 TH | 7.AIR CONDITIONING SYSTEMS | | | | Factors affecting comfort air conditioning. Equipment used in an air-conditioning | | | 1ST | Classification of air-conditioning system | | | 2 ND | Winter Air Conditioning System | | 14 TH | 3RD | Summer air-conditioning system. | | | 4TH | Numerical on above | | | 1ST | Numerical on above | | 15 TH | 2ND | Numerical on above | | | 3RD | Discussion of probable question | | | 4TH | CLASS TEST | ## Learning Resouces: - 01. REFRIGERATION AND AIRCONDITIONING BY C.P ARRORA, TMH - 02. REFRIGERATIONANDAIRCONDITIONINGBYR.S.KHURMI&J.K.GOPTA,S.CHAND - 03. REFRIGERATION AND AIRCONDITIONING BY P.L BALLANY, KHANNAPUBLISHER - 04. REFRIGERATION AND AIRCONDITIONINGBY DOMKUNDRA ANDARORA, DHANPAT RAYAND SON Prepared By Pravat Kumar Swain Lecturer In Mechanical Engg. G.I.E.T (Polytechnic), Jagatpur, Cuttack 10 07 25 The Deptt. Mechanical Errog. Deptt. SIE: (Polytechnic Ja stpur 12|7|25 Principal HET (Polytechnic)