| | DEPARTMENT O | OF MECHANICAL ENGINEERING. | |---|---|---| | DISCIPLINE: MECHANICAL ENGG. | SEMESTER-
3RD | NAME OF THE TECHING FACULTY: Er.PRAVAT KUMAR SWAIN | | SUBJECT :STRENGTH OF
MATERIAL [MEPC203 (TH:2)] | NO OF DAYS
PER WEEK
CLASS
ALLOTED:03 | SEMESTER FROM DATE: 14/07/2025 TO 15/11/2025
NO OF WEEKS:-15 | | WEEK | CLASS DAY | THEORY TOPICS | | 1 ST | 1 ST | Types of forces; Stress, Strain and their nature | | | 2 ND | Mechanical properties of common engineering
materials | | | 3 RD | Significance of various points on stress – strain diagram
for M.S. and C.I. specimens | | 2 ND | 1 ST | Significance of factor of safety; Relation between elastic constants | | | 2 ND | Stress and strain values in bodies of uniform section
and of composite section under the influence of normal
forces | | | 3 RD | Thermal stresses in bodies of uniform section and composite sections | | 3 RD | 1 ST | Related numerical problems on the above topics | | | 2 ND | Strain Energy: Strain energy or resilience, proof resilience and modulus of resilience | | | 3 RD | Derivation of strain energy for the following cases: i) Gradually applied load, ii) Suddenly applied load, iii) Impact/ shock load | | 4 TH | 1 ST | Derivation of strain energy for the following cases: i) Gradually applied load, ii) Suddenly applied load, iii) Impact/ shock load Related numerical problems. | | | 2 ND | Topic-2 Shear Force & Bending Moment Diagrams: Types of beams with examples: a) Cantilever beam, b) Simplysupported beam, c) Over hanging beam, d)Continuous beam, e) Fixed beam | | | 3 RD | Types of Loads – Point load, UDL and UVL; Definition
and explanation of shear force and bending moment | | 5 [™] | 1 ⁵⁷ | Calculation of shear force and bending moment and
drawing the S.F and B.M. diagrams by the analytical
method only for the following cases a) Cantilever with
point loads | | | 2 ND | Calculation of shear force and bending moment and
drawing the S.F and B.M. diagrams by the analytical
method only for the following cases b) Cantilever with
uniformly distributed load | | | 3 RD | Calculation of shear force and bending moment and
drawing the S.F and B.M. diagrams by the analytical
method only for the following cases c) Simply
supported beam with point loads | | 6 TH | 157 | Calculation of shear force and bending moment and
drawing the S.F and B.M. diagrams by the analytical
method only for the following cases d) Simply
supported beam with UDL, | | | 2 ND | Calculation of shear force and bending moment and
drawing the S.F and B.M. diagrams by the analytical | | THE PART AND MINES | | method only for the following cases e) Over hanging beam with point loads, at the center and at free ends, | |--|------------------------|---| | | 3 RD | Calculation of shear force and bending moment and
drawing the S.F and B.M. diagrams by the analytical
method only for the following cases f) Over hanging
beam with UDL throughout | | 7 TH | 1 ^{5T} | Calculation of shear force and bending moment and
drawing the S.F and B.M. diagrams by the analytical
method only for the following cases g) Combination of
point and UDL for the above, Related numerical
problems | | | 2 ND | TOPIC-3 Theory of Simple Bending and Deflection of
Beams: Explanation of terms: Neutral layer, Neutral Axis,
Modulus of Section, Moment of Resistance, Bending
stress, Radius of curvature | | | 3 RD | Explanation of terms: Neutral layer, Neutral Axis, Modulus of Section, Moment of Resistance, Bending
stress, Radius of curvature | | 8 TH | 1 ST | Assumptions in theory of simple bending; Bending
Equation M/I = σ/Y = E/R with derivation | | | 2 ND | Problems involving calculations of bending stress,
modulus of section and moment of resistance | | | 3 RD | Calculation of safe loads and safe span and dimensions of crosssection | | 9 [™] | 1 ST | Definition and explanation of deflection as applied to
beams | | | 2 ND | Deflection formulae without proof for cantilever and
simply supported beams with point load and UDL only
(Standard cases only); | | | 3 RD | Related numerical problems | | | 1 ST | CLASS TEST | | 10 TH | 2 ND | TOPIC-4 Torsion in Shafts and Springs: Definition and function of shaft; Calculation of polar M.I. for solid and hollow shafts. | | | 3 RD | Assumptions in simple torsion; Derivation of the
equation T/J=fs/R=Gθ/L. | | render er bereiting bijde i
Here often i mangan 1600 bi | 1 ^{5T} | Problems on design of shaft based on strength and
rigidity; | | 11 TH | 2 ND | Numerical Problems related to comparison of strength
and weight of solid and hollow shafts | | | 3 RD | Classification of springs; Nomenclature of closed coil helical spring. Deflection formula for closed coil helical spring (without the sp | | 12 TH | 1 ST | Deflection formula for closed coil helical spring (without derivation). Stiffness of spring; Numerical problems on closed coil | | | 2 ND | helical spring to find safe load, deflection, size of coil and number of coils. | | | 3 RD | Numerical problems on closed coil helical spring to fine
safe load, deflection, size of coil and number of coils. | | | 1 ST | CLASS TEST | | 13 TH | 2 ND | TOPIC-5: Thin Cylindrical Shells: Explanation of longitudinal and hoop stresses in the light of circumferential and longitudinal failure ofshell | | 14 TH | 1 ST | Derivation of expressions for the longitudinal and hoop
stress for seamless and seam shells | |------------------|------------------------|---| | | 2 ND | Derivation of expressions for the longitudinal and hoop
stress for seamless and seam shells | | | 3 RD | Related numerical Problems for safe thickness and safe working pressure | | 15 [™] | 1 ST | Related numerical Problems for safe thickness and safe
working pressure | | | 2 ND | CLASS TEST | | | 3 RD | REVISION | ## REFERENCES BOOKS: - 1. Strength of Materials D.S. Bedi, Khanna Book Publishing Co. (P) Ltd., Delhi, 2017 - 2. Strength of Materials B.C.Punmia, Ashok Kumar Jain & Arun Kumar Jain, Laxmi Publications, New Delhi, 2013 - 3. Strength of Materials R.S. Khurmi, S.Chand Company Ltd. Delhi 12/07/25 Mechanical E. 99. Depti. 121H24 Principal HET (Polytechnic) Jagatpur, Cuttack Prepared by Er.Pravat Kumar Swain Lecturer In Mechanical Engg Department G.I.E.T(POLYTECNIC), Jagatpur, Cuttack