Discipline:	Semester:4 th	Name of the Teaching Faculty: BHABANI SANKAR SAHOO
MECHANICAL	201110300111	Traine of the feathing factory. Billing 12 state of the state of
ENGG.		
211001		
Subject:THERMAI	No.of days	Semester From date: 14.02.2023 To Date: 23.05.2023
ENGGII(TH 4)	per week	
	class	No.of Weeks:15
	allotted:04	
Week	ClassDay	Theory/PracticalTopics
1 ST	1 ST	1. Performance of I.C engine, Mean effective pressure
	2^{ND}	Define mechanical efficiency
	3 RD	Indicated thermal efficiency, Relative Efficiency
	4 TH	Brake thermal efficiency, simple problem
2 ND	1 ST	Overall efficiency Mean effective pressure, simple problem
	2^{ND}	specific fuel consumption
	3 RD	Define air-fuel ratio & calorific value of fuel
	4 TH	Work out problems to determine efficiencies & specific fuel consumption.
3 RD	1 ST	2.Air Compressor 2.1 Explain functions of compressor & industrial use of
		compressor air
	2^{ND}	2.2 Classify air compressor & principle of operation
	3 RD	2.3 Describe the parts and working principle of reciprocating Air compressor
	4 TH	2.4 Explain the terminology of reciprocating compressor such as bore, stroke,
	· CIT	pressure ratio free air delivered &Volumetric efficiency
4 TH	1 ST	2.5 Derive the work done of single stage compressor without clearance
	2 ND	Derive the work done of single stage compressor with clearance
	3 RD	Solve simple problems
-TI	4 TH	Derive the work done of two stage compressor without clearance
5 TH	1 ST	Solve simple problems
	2 ND	Derive the work done of two stage compressor with clearance
	3 RD	Solve simple problems
-TII	4 TH	Solve simple problems (without clearance only)
6 TH	1 ST	3. Properties of Steam 3.1 Difference between gas &vapours
	2 ND	3.2 Formation of steam
	3 RD	3.3 Representation on P-V, T-S, H-S, & T-H diagram.
	4 TH	3.4 Definition & Properties of Steam.
7 TH	1 ST	3.4 Definition & Properties of Steam.
	2 ND	3.4 Definition & Properties of Steam.
	3 RD	Solve simple problems
o TH	4 TH	3.5 Use of steam table &mollier chart for finding unknown properties.
8 TH	1 ST	3.6 Non flow & flow process of vapour.
	2 ND	3.7 P-V, T-S & H-S, diagram.
	3 RD	3.8 Determine the changes in properties.
	4 TH	Solve simple numerical.
9 TH	1 ST	4. Steam Generator 4.1 Classification & types of Boiler
	2 ND	4.2 Important terms for Boiler.
	3 RD	4.3 Comparison between fire tube & Water tube Boiler.
- 711	4 TH	4.4 Description & working of common boilers of Cochran,
10 TH	1 ST	4.4 Description & working of common boilers of Lancashire
	- NID	
	2 ND	4.4 Description & working of common boilers of Babcock & Wilcox Boiler
	3 RD	4.5 Boiler Draught (Forced, induced & balanced)
	4 TH	4.5 Boiler Draught (Forced, induced & balanced)

11 TH	1 ST	4.6 Boiler mountings
	2 ND	4.6 Boiler mountings
	3 RD	4.6 Boiler accessories.
	4 TH	4.6 Boiler accessories.
12 TH	1 ST	5. Steam Power Cycles
	2^{ND}	5.1 Carnot cycle with vapour. 5.2 Derive work & efficiency of the cycle.
	3 RD	Solve simple problems
	4^{TH}	5.3 Rankine cycle. 5.3.1 Representation in P-V, T-S & h-s diagram. 5.3.2 Derive Work & Efficiency
13 TH	1 ST	5.3.3 Effect of Various end conditions in Rankine cycle. Solve simple problems
	2^{ND}	5.3.4 Reheat cycle
	3 RD	Regenerative Cycle.
	4 TH	Solve simple problems
14 TH	1 ST	6. Heat Transfer 6.1 Modes of Heat Transfer (Conduction, Convection, Radiation).
	2^{ND}	6.2 Fourier law of heat conduction
	3 RD	Thermal conductivity (k).
	4 TH	6.3 Newton's laws of cooling.
15 TH	1 ST	6.4 Radiation heat transfer (Stefan, Boltzmann & Kirchhoff's law) only
		statement, no derivation & no numerical problem
	2^{ND}	6.4 Radiation heat transfer (Stefan, Boltzmann & Kirchhoff's law) only
		statement, no derivation & no numerical problem
	3 RD	6.5 Black body Radiation,
	4 TH	Definition of Emissivity, absorptivity, & transmissibility.

LearningResouces:

- 01. Thermal Engineering by M M Rathore, McGrawHill Education
- 02. A text book of Thermal Engg.by R S Khurmi and J K Gupta, S Chand Publisher
- 03. SteamTables by K K Ramalingam, Scitech Publication

Prepared By
BHABANI SANKAR SAHOO
Lecturer, Mechanical Engg. Deptt.
G.I.E.T (Polytechnic), Jagatpur, Cuttack