| Discipline
:MECHANICAL
ENGG. | Semester
:3 rd | Name of the Teaching Faculty: PRAVAT KUMAR SWAIN Semester From Date:01.08.2023 To Date:30.11.2023 No. of Weeks:15 | | |--|---|--|--| | SUBJECT:
STRENGH OF
MATERIAL
(TH-2) | No. of
days/per
week class
allotted:
04 | | | | Week | Class
Day | Theory Topics | | | 1 st | 1 st | 1.Simple stress& strain Types of load, stresses & strains, (axial and tangential), | | | | 2 nd | Hooke's law, young's modulus, bulk modulus, modulus of rigidity | | | | 3 rd | Poisson's ratio, derive the relation between three elastic constants | | | | 4 th | Principle of super position, stresses in composite section | | | 2 nd | 150 | Temperature stress, determine the temperature stress in composite
bar (single core) | | | | 2 nd | Strain energy and resilience, stress due to gradually applied,
suddenly applied and impact load | | | | 314 | Strain energy and resilience, stress due to gradually applied,
suddenly applied and impact load | | | | 4 th | Simple problems on above | | | | 1st | Simple problems on above | | | 3rd | 2nd | Simple problems on above | | | 314 | 3rd | 2.Thin cylindrical and spherical shell under internal pressure Definition of hoop and longitudinal stress, Strain | | | | 4 th | Definition of hoop and longitudinal stress, strain | | | 4 th | 1st | Derivation of hoop stress, longitudinal stress, hoop strain, longitudinal strain and volumetric strain | | | | 2 nd | Derivation of hoop stress, longitudinal stress, hoop strain,
longitudinal strain and volumetric strain | | | | 3rd | Computation of the change in length, diameter and volume | | | | 4 th | Simple problems on above | | | 5 th | 1st | Simple problems on above | | | | 2 nd | CLASS TEST | | | | 3 rd | Two dimensional stress systems Determination of normal stress, shear stress and resultant stress on oblique plane | | | | 4 th | Determination of normal stress, shear stress and resultant stress
on oblique plane | | | 6 th | 1 st | Determination of normal stress, shear stress and resultant stress
on oblique plane | | | | 2nd | Location of principal plane and computation of principal stress | | | | 3rd | Location of principal plane and computation of principal stress | | | | 4 th | Location of principal plane and computation of principal stress | | | | 1 st | Location of principal plane and computation of principal
stress and maximum shear stress using Mohr's circle | | | 7th | 2 nd | Location of principal plane and computation of principal
stress and maximum shear stress using Mohr's circle | | | | 3rd | Location of principal plane and computation of principal stress and
maximum Shear stress using Mohr's circle | | | |------------------|-------------------|---|--|--| | | - 4 th | Location of principal plane and computation of principal stress and
maximum Shear stress using Mohr's circle | | | | 8 th | Ial | 4.Bending moment& shear force Types of beam and load | | | | | 2 nd | Types of beam and load | | | | | 3 rd | Types of beam and load | | | | | 4 th | Concepts of shear force and bending moment | | | | | 1 st | Concepts of shear force and bending moment | | | | | 2 nd | Concepts of shear force and bending moment | | | | 9 th | 3rd | Shear force and bending moment diagram and its salient feature
illustration in cantilever beam, simply supported beam and
overhanging beam under point load and uniformly distributed load | | | | | 4 th | Shear force and bending moment diagram and its salient feature
illustration in cantilever beam, simply supported beam an
overhanging beam under point load and uniformly distributed load | | | | 10 th | 1 st | Shear force and bending moment diagram and its salient feature
illustration in cantilever beam, simply supported beam an
overhanging beam under point load and uniformly distributed load | | | | | 2 nd | Shear force and bending moment diagram and its salient features
illustration in cantilever beam, simply supported beam and
overhanging beam under point load and uniformly distributed load | | | | | 3rd | 5.Theory of simple bending Assumptions in the theory of bending, | | | | | 4 th | Assumptions in the theory of bending, | | | | 4.4th | Ist | Bending equation, moment of resistance, section modulus & neutral
axis. | | | | 11 th | 2 nd | Bending equation, moment of resistance, section modulus & neutral
axis. | | | | | 3rd | Bending equation, moment of resistance, section modulus & neutral
axis. | | | | | 4 th | Solve simple problems | | | | | 1st | Solve simple problems | | | | | 2 nd | Solve simple problems | | | | 12 th | 3rd | Solve simple problems | | | | | 4 th | CLASS TEST | | | | | 1 st | 6.Combined direct & bending stresses Define column | | | | | 2nd | Axial load, eccentric load on column | | | | 13 th | 3 rd | Direct stresses, bending stresses, maximum & minimum stresses, numerical Problems on above. | | | | | 4 th | Direct stresses, bending stresses, maximum &minimum stresses, numerical problems on above. | | | | | 1 st | Buckling load computation using Euler's formula (no
derivation) in columns with various end conditions | | | | 14 th | 2 nd | Buckling load computation using Euler's formula (no derivation
in columns with various end conditions | |------------------|-----------------|---| | | 3rd | 7.Torsion | | | | Assumption of pure torsion | | | 4 th | The torsion equation for solid and hollow circular shaft | | | 1 st | The torsion equation for solid and hollow circular shaft | | 15th | 2 nd | The torsion equation for solid and hollow circular shaft | | | 3 rd | Comparison between solid and hollow shaft subjected to pure torsion | | | 4 TH | CLASS TEST | ## RECOMMENDED BOOKS | Tele Com | LATE ADELY BOOKS | | | |----------|-------------------------------|-----------------------|-----------------------| | Sl. No. | Author | Title of the book | Publisher | | 01 | S Ramamrutham | Strength of Materials | Dhanpat Rai | | 02 | R K Rajput | Strength of Materials | S.Chand | | 03 | R.S khurmi | Strength of Materials | S.Chand | | 04 | G H Ryder | Strength of Materials | Mc millon and co.lmtd | | 05 | S Timoshenko and D
H Young | Strength of Materials | TMH | Principal GIET (Polytechnic Jagatpur, Cuttack Prepared By PRAVAT KUMAR SWAIN Lecturer Mechanical Engg Deptt G.I.E.T (Polytechnic), Jagatpur, Cuttack