Discipline :MECHANICAL ENGG.	Semester :3 rd	Name of the Teaching Faculty: PRAVAT KUMAR SWAIN Semester From Date:01.08.2023 To Date:30.11.2023 No. of Weeks:15	
SUBJECT: STRENGH OF MATERIAL (TH-2)	No. of days/per week class allotted: 04		
Week	Class Day	Theory Topics	
1 st	1 st	1.Simple stress& strain Types of load, stresses & strains, (axial and tangential),	
	2 nd	Hooke's law, young's modulus, bulk modulus, modulus of rigidity	
	3 rd	Poisson's ratio, derive the relation between three elastic constants	
	4 th	Principle of super position, stresses in composite section	
2 nd	150	 Temperature stress, determine the temperature stress in composite bar (single core) 	
	2 nd	 Strain energy and resilience, stress due to gradually applied, suddenly applied and impact load 	
	314	 Strain energy and resilience, stress due to gradually applied, suddenly applied and impact load 	
	4 th	Simple problems on above	
	1st	Simple problems on above	
3rd	2nd	Simple problems on above	
314	3rd	2.Thin cylindrical and spherical shell under internal pressure Definition of hoop and longitudinal stress, Strain	
	4 th	Definition of hoop and longitudinal stress, strain	
4 th	1st	Derivation of hoop stress, longitudinal stress, hoop strain, longitudinal strain and volumetric strain	
	2 nd	 Derivation of hoop stress, longitudinal stress, hoop strain, longitudinal strain and volumetric strain 	
	3rd	 Computation of the change in length, diameter and volume 	
	4 th	Simple problems on above	
5 th	1st	Simple problems on above	
	2 nd	CLASS TEST	
	3 rd	Two dimensional stress systems Determination of normal stress, shear stress and resultant stress on oblique plane	
	4 th	 Determination of normal stress, shear stress and resultant stress on oblique plane 	
6 th	1 st	 Determination of normal stress, shear stress and resultant stress on oblique plane 	
	2nd	 Location of principal plane and computation of principal stress 	
	3rd	 Location of principal plane and computation of principal stress 	
	4 th	 Location of principal plane and computation of principal stress 	
	1 st	 Location of principal plane and computation of principal stress and maximum shear stress using Mohr's circle 	
7th	2 nd	Location of principal plane and computation of principal stress and maximum shear stress using Mohr's circle	

	3rd	 Location of principal plane and computation of principal stress and maximum Shear stress using Mohr's circle 		
	- 4 th	 Location of principal plane and computation of principal stress and maximum Shear stress using Mohr's circle 		
8 th	Ial	4.Bending moment& shear force Types of beam and load		
	2 nd	Types of beam and load		
	3 rd	Types of beam and load		
	4 th	Concepts of shear force and bending moment		
	1 st	Concepts of shear force and bending moment		
	2 nd	 Concepts of shear force and bending moment 		
9 th	3rd	 Shear force and bending moment diagram and its salient feature illustration in cantilever beam, simply supported beam and overhanging beam under point load and uniformly distributed load 		
	4 th	 Shear force and bending moment diagram and its salient feature illustration in cantilever beam, simply supported beam an overhanging beam under point load and uniformly distributed load 		
10 th	1 st	 Shear force and bending moment diagram and its salient feature illustration in cantilever beam, simply supported beam an overhanging beam under point load and uniformly distributed load 		
	2 nd	 Shear force and bending moment diagram and its salient features illustration in cantilever beam, simply supported beam and overhanging beam under point load and uniformly distributed load 		
	3rd	5.Theory of simple bending Assumptions in the theory of bending,		
	4 th	Assumptions in the theory of bending,		
4.4th	Ist	 Bending equation, moment of resistance, section modulus & neutral axis. 		
11 th	2 nd	 Bending equation, moment of resistance, section modulus & neutral axis. 		
	3rd	 Bending equation, moment of resistance, section modulus & neutral axis. 		
	4 th	Solve simple problems		
	1st	Solve simple problems		
	2 nd	Solve simple problems		
12 th	3rd	Solve simple problems		
	4 th	CLASS TEST		
	1 st	6.Combined direct & bending stresses Define column		
	2nd	Axial load, eccentric load on column		
13 th	3 rd	Direct stresses, bending stresses, maximum & minimum stresses, numerical Problems on above.		
	4 th	Direct stresses, bending stresses, maximum &minimum stresses, numerical problems on above.		
	1 st	 Buckling load computation using Euler's formula (no derivation) in columns with various end conditions 		

14 th	2 nd	 Buckling load computation using Euler's formula (no derivation in columns with various end conditions
	3rd	7.Torsion
		Assumption of pure torsion
	4 th	 The torsion equation for solid and hollow circular shaft
	1 st	 The torsion equation for solid and hollow circular shaft
15th	2 nd	 The torsion equation for solid and hollow circular shaft
	3 rd	 Comparison between solid and hollow shaft subjected to pure torsion
	4 TH	CLASS TEST

RECOMMENDED BOOKS

Tele Com	LATE ADELY BOOKS		
Sl. No.	Author	Title of the book	Publisher
01	S Ramamrutham	Strength of Materials	Dhanpat Rai
02	R K Rajput	Strength of Materials	S.Chand
03	R.S khurmi	Strength of Materials	S.Chand
04	G H Ryder	Strength of Materials	Mc millon and co.lmtd
05	S Timoshenko and D H Young	Strength of Materials	TMH

Principal
GIET (Polytechnic Jagatpur, Cuttack

Prepared By PRAVAT KUMAR SWAIN Lecturer Mechanical Engg Deptt

G.I.E.T (Polytechnic), Jagatpur, Cuttack