Discipline :	Semester :2 nd (Common)	Name of the Teaching Faculty: R. R. Lenka
MECHANICAL ENGG		
Subject: ENGG	No. of	Semester From Date:14.03.2022 To Date:18.06.22
MECHANICS(Th-4)	days/per week	
	class	No of weeks-15
	allotted:04	
Week	Class Day	Theory Topics
1st	1 st	1.FUNDAMENTALS OF ENGINEERING MECHANICS
		Definitions of Mechanics, Applied Mechanics in the field of Engineering
		Statics, Dynamics, Definition Rigid Bodies. Classification of force system
		according to plane & line of action.
	2 ND	Characteristics of Force & Effects of Force. Principles of transmissibility
		Force & Principles of Superposition.
	3 RD	Action & Reaction Forces & concept of Free Body Diagram, Some
		Examples, Definition, Method of Resolution, problem solved, Q & A
		Discussion
	4 th	Types of Component forces, Perpendicular components & non-
		perpendicular components
2 ND	1st	Composition of Forces, Definition, Resultant Force, Method of
		composition of forces, Analytical Method such as Law of Parallelogram
		of forces
	2 ND	Method of resolution, Introduction to Space diagram, Vector diagram,
		Simple problem solved.
	3 RD	Polygon law of forces, Resultant of concurrent, non-concurrent &
		parallel forces system by Analytical Method
	4 th	By Graphical Method.
3rd	1 st	Moment of Force, Definition, Geometrical meaning of moment of a
		force
	2 ND	Measurement of moment of a force & its S.I units.
	3 RD	Classification of moments, simple problem solved
	4 th	Sign convention and Law of moments (Varignon's Theorem)
4 th	1 st	Couple – Definition, S.I. units, measurement of couple
	2 ND	Properties of couples, simple problem solved, Q & A Discussion
	3 RD	2.EQUILIBRIUM
		Definition, Types of Equilibrium
	4 th	Conditions of equilibrium
5 th	1 st	Analytical & Graphical conditions of equilibrium for concurrent, non-
		concurrent.
	2 ND	Graphical conditions of equilibrium of non-concurrent forces Free Body
		Diagram
	3 RD	Lami's Theorem – Statement and Explanation
	4 th	Proof of Lami's theorem
6 th	1st	Application of Lami's Theorem for solving various engineering
0	150	problems. Q & A Discussion as per SCTE & VT Exam
	2 nd	Solving various engineering problems on Lami's theorem contd
	3 rd	3.FRICTION
	-	Definition of friction, Frictional forces, Limiting frictional force, Co-
		efficient of Friction, Examples of application of Friction
	4 th	Angle of Friction & Angle of Repose, Laws of Friction
7 th	1 st	Advantages & Disadvantages of Friction. Simple problem solved, Q & A
	2 ND	Equilibrium of bodies on level plane – Force applied on horizontal
	3 RD	And inclined plane (Up & Down)
	4 th	Ladder friction
8 th	1 st	Wedge Friction
	2 ND	Ladder friction problem solved

	3 RD	Wedge friction problem solved
	4 th	Problem solved continued
9 th	1 st	4.CENTROID & MOMENT OF INERTIA
	-	Centroid – Definition
	2 ND	Moment of an area about an axis
	3 RD	Centroid of some common geometrical figures such as squares,
	C C	rectangles, triangles, circles, semicircles & quarter circles,
	4 th	Centroid of some common geometrical figures such as squares,
		rectangles, triangles, circles, semicircles & quarter circles contd
10 th	1 st	Centroid of some composite figures, solved problems
	2 ND	Moment of Inertia — Definition, units of moment of inertia
	3 RD	Solved numerical
	4 th	Parallel axis Theorems & Perpendicular axis Theorems
11 th	1st	Prove of parallel & perpendicular axis theorem
	2 nd	M.I. of some common plane lamina such as circle, rectangle, hollow
		rectangle, hollow circular section
	3 rd	M.I. of common plane lamina semi-circular, Triangular section
	4 th	Solved numerical, Q & A Discussion
12 th	1st	Solved numerical, Q & A Discussion
12	2 nd	Solved numerical, Q & A Discussion
	3 RD	5.SIMPLE MACHINES
	3	Definition of simple machine, velocity ratio of simple machine,
		compound gear train
	4 th	Explanation of simple lifting machine, Explanation of compound lifting
		machine
13 th	1 st	Define M.A, V.R. & Efficiency of a lifting machine, The relation between
15	_	M.A, V.R. & Efficiency of a lifting machine
	2 ND	State the Law of Machine and its equation, Reversibility of Machine,
		conditions for reversibility of lifting machine
	3 RD	Non-reversible machine or Self-Locking Machine, Study of simple
		machines–Simple wheel and axle
	4 th	Single purchase crab winch, double purchase crab winch
14 th	1 st	Worm & Worm Wheel, Screw Jack, simple problem solved
	2 ND	Types of hoisting machine-like derricks etc, their use and working
		principle
	3 RD	6.DYNAMICS
		Kinematics & Kinetics, Principles of Dynamics, Newton's Laws of Motion
	4 th	Motion of Particle acted upon by a constant force, Equations of motion,
		simple problem solved
15 th	1 st	De-Alembert's Principle, Work, Power, Energy, & its Engineering
		Applications
	2 ND	Kinetic & Potential energy, its application
	3 RD	Momentum & impulse, Conservation of energy, Conservation of Linear
		momentum
	4 th	Collision of elastic bodies, Coefficient of Restituition, problem solved,
		Revision of previous chapters.

Books Recommended

1. Engineering Mechanics – By A.R. Basu (TMH Publication Delhi)

2. Engineering Machines –By Basudev Bhattacharya (Oxford University Press).

3. Text Book of Engineering Mechanics – R.S. Khurmi (S. Chand).

4. Applied Mechanics & Strength of Material – By I.B. Prasad.

5. Engineering Mechanics – By Timosheenko, Young & Rao.