GIET POLYTECHNIC, JAGATPUR, CUTTACK

LESSON PLAN

Discipline: ELECTRONICS	Semester: 6 th	Name Of The Teaching Faculty: RUPAK KUMAR SAHOO
Subject: DSP	No. Of Days Per Week Class Allotted: 04 P	Semester From Date: To Date:
Week	Class Day	No. of weeks: 15 Theory Topic
VVCCK	Oldo Day	
1 st week	1 st	UNIT 1 : INTRODUCTION
	2 nd	1.1: Basic signal system & signal processing
	3 rd	1.1: Compare the advantage of DSP over ASP
	4 th	1.2: Classify signal
2 nd week		1.2: Continuous time vs Discrete time signal
	1 st	1.3: Concept of frequency in continuous time signal
		1.3: Continuous time vs discrete time signal
	3 rd	• 1.4: Adc & dac
	4 th	1.4.a : Sampling Of Analog Signal
3 rd week	1 st	1.4.b : The Sampling Theorem
	2 nd	1.4.c : Quantization Of Continuous Amplitude Signals
	ard	1.4.d : Coding of quantized sample
	3 rd	1.4.e : Digital to analog conversion.
	4 th	1.4.f: Analysis of digital system signal vs discrete time signal
	ast	UNIT 2: DISCRETE TIME SIGNALS & SYSTEMS
	1 st	2.1 : Concept of Discrete time signals
4 th week	and	2.1.1: elementary discrete time signal
	2 nd	2.1.2: Classification Discrete time signal
	3 rd	2.1.3: Simple manipulation of discrete time signals
	4 th	2.2: Discrete time system
		2.2.1: Input- Output of system
	1 st	2.2.2: Block diagram of discrete-time system
		2.2.3: Classify discrete time system
	2 nd	2.2.4: Inter connection of discrete-time system
5 th week	3 rd	2.3: Discrete time-invariant system
		2.3.1: Different techniques for the analysis of linear system
	4 th	2.3.2: Resolution Of A Discrete Time Signal Into Impulse
		2.3.3: response of LTI system to arbitrary inputs using convolution
		sum
6 th week	1 st	2.3.4: Convolution & interconnection of LTI system properties
		2.3.5: Study systems with finite duration and infinite duration
		impulse response
		2.3.5: Study systems with finite duration and infinite duration
	2 nd	impulse response
		2.4: Discrete time systems described by difference equation
	3 rd	• 2.4.1: Recursive & non-recursive discrete time system
		2.4.2: Determine the impulse response of linear time invariant
		recursive system
	4 th	2.4.3: Correlation of Discrete Time signals
7 th week	1 st	UNIT-3: THE Z-TRANSFORM & ITS APPLICATION TO THE ANALYSIS
		OF LTI SYSTEM
		3.1: Z-Transform & Its Application to LTI System
	2 nd	• 3.1.1: Direct Z-Transform
	3 rd	3.1.1: Direct Z-Transform
	4 th	3.1.2: Inverse Z-Transform

	1 st	3.1.2: Inverse Z-Transform
8 th week	2 nd	3.2: Various Properties Of Z-Transform
	3 rd	3.3: Rational Z-transform
	4 th	3.3.1: Poles & zeros
	1 st	3.3.2: Pole location time domain behavior for casual signals
	2 nd	 3.3.3: System function of a linear time invariant system.
9th week	3 rd	3.4: Discuss inverse Z-transform
		3.4.1: Inverse Z-transform by partial fraction expansion
	4 th	 3.4.1: Inverse Z-transform by partial fraction expansion
	1 st	3.4.2: Inverse Z-transform by contour Integration
	2 nd	3.4.2: Inverse Z-transform by contour Integration
	3 rd	UNIT-4: DISCUSS FOURIER TRANSFORM & ITS APPLICATIONS
10 th week		PROPERTIES
		4.1: concept of discrete Fourier transform
	4 th	4.2: Frequency domain sampling and reconstruction of discrete
		time signals
	1 st	4.2: Frequency domain sampling and reconstruction of discrete
		time signals
11th week	2 nd	4.3: Discrete Time Fourier Transformation (DTFT)
	3 rd	4.4: Discrete Fourier Transformation (DFT)
	4 th	4.5: compute DFT as a linear transformation
	1 st	4.6: Relate DFT To Other Transforms
	2 nd	4.6: Relate DFT To Other Transforms
12 th week	3 rd	4.7: Property Of The DFT
	4 th	4.7: Property Of The DFT
	1 st	4.8: multiplication of two DFT & circular convolution
	2 nd	4.8: multiplication of two DFT & circular convolution
	3 rd	UNIT-5: FAST FOURIER TRANSFORM ALGORITHM & DIGITAL
13 th week		FILTERS
3000		5.1: compute DFT & FFT algorithm
	4 th	5.2: Direct computation of DFT
	1 st	5.3: Divide and Conquer Approach to computation of DFT
	2 nd	5.4: Radix-2 algorithm (small problems)
14 th week	3 rd	5.4: Radix-2 algorithm (small problems)
	4 th	5.5: Application of FFT algorithms
	1 st	5.6: Introduction to digital filters
	2 nd	5.6: FIR Filters & generalconsiderations
	3 rd	• 5.7: Introduction to DSP architecture, familiarisation of different
15 th week		types of processor
FB LEE WAR	4 th	 5.7: Introduction to DSP architecture, familiarisation of different
		types of processor